Data Frames | Statistics for Data Analysis.

Published: 13 August 2023
on channel: The Data Armory
234
7

Essential Statistical Concepts for Data Analysis series is a statistics-for-data-analysis roadmap tutorials for beginners. It highlights some of the fundamental statistical concepts for data analysis, preparing them for data analysis projects and statistics for data science.

► Find the Notebook used here:
===========================================
🔗Get the code used here:
Understanding `DataFrames`
🔗Ask a question here : https://github.com/everndah/Statistic...
🔗Course Materials [Work In Progress] : https://everndah.github.io/the-data-a...

► Other Tutorials Mentioned
===========================================
[How to Download Datasets](   • How to DOWNLOAD KAGGLE Datasets Tutorial  )

🔴A Simple Thank You:
===========================================
Support channel/these videos on: Support channel/these videos on: https://www.buymeacoffee.com/thedataa...

Available Options:
🔴One Time Support/Donation.
🔴Monthly Subscriptions.

🔴Subscribe:
===========================================
https://www.youtube.com/@thedataarmor...


⏰⏰TIMECODES ⏰⏰
===========================================
W.I.P.

► Reference and Further Reading:
===========================================
🔗 Embeddings for Tabular Data: A Survey by Rajat Singh and Srikanta Bedathur.
🔗 Practical Statistics for Data Scientists by Peter Bruce, Andrew Bruce, and Peter Gedeck.
🔗 Pandas Documentation.
🔗 Python for Data Analysis Data Wrangling with Pandas, NumPy, and IPython by Wes McKinney.
🔗 Think Stats Exploratory Data Analysis in Python by Allen B. Downey and Green Tea Press.

► Essential Statistics For Data Analysis Tutorials
===========================================
Part I: [ESSENTIAL STATISTICAL Concepts for DATA ANALYSIS](   • ESSENTIAL STATISTICAL Concepts for DA...  )
Part II: [Structured and Unstructured Data](   • Structured and Unstructured Data || S...  )


⭐️ Contact and Follow ⭐️
===========================================
Email- [email protected]
Twitter:   / thedataarmory  

❤️ Thanks for watching